Download Code
Introduction
We introduce the following notation: $L^2=L^2\left(\Omega\right)$, $L^2_T=L^2\left(\Omega\times \left(0,T\right)\right)$,
and the correspondent norms $\norm{\cdot}=\langle \cdot,\cdot\rangle$ and $\norm{\cdot}_T=\langle \cdot,\cdot\rangle_T$. Moreover, we define the norms
We want to study the following optimal control problem:
where $L: \ L^2_T \to L^2_T$ is defined by
and $y$ is the solution of the PDE given by
Notice that, by integration by parts, $ L^*\mu=B^\ast p $, where $\varphi$ is solution of the adjoint equation:
Sparse control: $\alpha_c>0$ ($\alpha_s=0$)
The stationary problem
Optimality conditions
Numerical algorithm
In order to compute a numerical solution of problem
after a discretization by finite differences, we use a prox-prox splitting: first write the state as $y=A^{-1}Bu$, then
- Proximal-point step:
$$
\begin{equation*}
\begin{split}
\tilde{u}_{k} & =argmin_{u\in L^2} \left\{\frac{\beta}{2}\norm{u}^2 + \frac{\gamma}{2}\norm{A^{-1}Bu-z}^2+ \frac{1}{2\lambda_k}\norm{u-u_k}^2\right\}\\
& = \left[\left(\beta+\frac{1}{\lambda_k}\right)I+\gamma B^*A^{-*}A^{-1}B\right]^{-1}\left(\frac{1}{\lambda_k}u_k+\gamma B^*A^{-*}z\right).
\end{split}
\end{equation*}
$$
- Proximal-point step:
$$
\begin{equation*}
\begin{split}
u_{k+1}& =argmin_{u\in L^2} \left\{\alpha_c \norm{u}_{1,T} + \frac{1}{2\lambda_k}\norm{u-\tilde{u}_k}_{T}^2\right\}\\
& = shrink(\tilde{u}_k,\alpha_c \lambda_k).
\end{split}
\end{equation*}
$$
Remark: Notice that, when $\alpha_s=0$, the solution of $\left(\mathcal{P}^c_s\right)$ is simply given by
Evolutionary problem
Optimality conditions
Define the classical Lagrangian
By integration by parts, we have
Deriving with respect to the three variables $\left(u,y,p\right)$, we obtain the optimality system:
where the relation between the optimal control and the dual state is given by
The latter is equivalent to
where the operator of $soft-shrinkage$ is defined by
Finally,
Numerical algorithm
In order to compute a numerical solution of problem $\left(\mathcal{P}_c\right)$, after a discretization by finite differences, we use a grad-prox splitting:
- Gradient step:
$$
\begin{equation*}
\begin{split}
\tilde{u}_{k} & = u_k-\lambda_k \nabla_u \left[\frac{\beta}{2}\norm{u}^2_{T} + \frac{\gamma}{2}\norm{Lu-z}_{T}^2 \right]\left(u_k\right) \\
& = u_k-\lambda_k \left[\beta u_k+\gamma L^*\left(Lu_k-z\right)\right]\\
& = u_k - \lambda_k\left[\beta u_k+\gamma B^*p_k\right],
\end{split}
\end{equation*}
$$
where
$$
\begin{equation*}
\begin{cases}
y_k'+Ay_k=Bu_k & \left(\Omega \times \left(0,T\right)\right)\\
y_k=0 & \left(\partial\Omega\times \left(0,T\right)\right)\\
y_k(0)=0 & \left(\Omega\right)
\end{cases}
\end{equation*}
$$
and
$$
\begin{equation*}
\begin{cases}
-p_k'+A^* p_k =y_k-z & \left(\Omega \times \left(0,T\right)\right)\\
p_k=0 & \left(\partial\Omega\times \left(0,T\right)\right)\\
p_k(T)=0 & \left(\Omega\right).
\end{cases}
\end{equation*}
$$
- Proximal-point step:
$$
\begin{equation*}
\begin{split}
u_{k+1}& =argmin_{u\in L^2_T} \left\{\alpha_c \norm{u}_{1,T} + \frac{1}{2\lambda_k}\norm{u-\tilde{u}_k}_{T}^2\right\}\\
& = shrink(\tilde{u}_k,\alpha_c \lambda_k).
\end{split}
\end{equation*}
$$
Remarks: Another possibility is to include the term $\frac{\beta}{2}\norm{u}^2_{T}$ in the proximal step.
Notice that, for
then $\nabla f$ is Lipschitz continuous. Indeed, for $u_i\in L^2_T$ ($i=1,2$), then
where
and
By linearity $\delta y=y_2-y_1$ and $\delta p=p_2-p_1$ solve the same equations with right-hand-sides $B(u_2-u_1)$ and $\delta y$, respectively. Then
where we defined
In order the prox-grad method to converge, the restriction on the step size is given by
Sparse state: $\alpha_s>0$ ($\alpha_c=0$)
The stationary problem
Optimality conditions
Finally, we obtain a single equation in the dual variable $p$:
Numerical algorithm
In order to compute a numerical solution of problem $\left(\mathcal{P}_s\right)$, after a discretization by finite differences, we use a prox-prox splitting on the Augmented Energy: first write the state as $y=A^{-1}Bu$, then
- Proximal-point step:
$$
\begin{equation*}
\begin{split}
u_{k+1} & =argmin_{u\in L^2} \left\{\frac{\beta}{2}\norm{u}^2 + \frac{\gamma}{2}\norm{A^{-1}Bu-z}^2+\frac{\delta}{2\lambda_k}\norm{A^{-1}Bu-y_k}^2 +\frac{1}{2\lambda_k}\norm{u-u_k}^2\right\}\\
& = \left[\left(\beta+\frac{1}{\lambda_k}\right)I+\left(\gamma+\frac{\delta}{\lambda_k}\right) B^*A^{-*}A^{-1}B\right]^{-1}\left[\frac{1}{\lambda_k}u_k+ B^*A^{-*}\left(\gamma z+\frac{\delta}{\lambda_k}y_k\right)\right].
\end{split}
\end{equation*}
$$
- Proximal-point step:
$$
\begin{equation*}
\begin{split}
y_{k+1}& =argmin_{y\in L^2} \left\{
\alpha_s \norm{y}_{1} + \frac{\delta}{2\lambda_k}\norm{y-A^{-1}Bu_{k+1}}^2+\frac{1}{2\lambda_k}\norm{y-y_k}_{T}^2\right\}\\
& = shrink(\tilde{y}_k,\tilde{\lambda}_k),
\end{split}
\end{equation*}
$$
where we defined
$$
\begin{eqnarray*}
\tilde{y}_k & = & \frac{y_k+\delta A^{-1}B u_{k+1}}{1+\delta};\\
\tilde{\lambda}_k & = & \frac{\alpha_s \lambda_k}{1+\delta}.
\end{eqnarray*}
$$
Remark: Notice that again, when $\alpha_s=0$, the solution of $\left(\mathcal{P}_s\right)$ is simply given by
Evolutionary problem
Optimality conditions
Define the classical Lagrangian
By integration by parts, we have
Deriving with respect to the three variables $\left(u,y,p\right)$, we obtain the optimality system:
where the relation between the optimal control and the dual state is given by
The adjoint equation is equivalent to
Finally,
Numerical algorithm
In order to compute a numerical solution of problem $\left(\mathcal{P}_s\right)$, after a discretization by finite differences, we use a grad-prox splitting on the following Augmented Energy:
Then,
- Gradient step:
$$
\begin{equation*}
\begin{split}
u_{k+1} & = u_k-\lambda_k \nabla_u \left[\frac{\beta}{2}\norm{u}^2_{T}+ \frac{\gamma}{2}\norm{Lu-z}_{T}^2+\frac{\delta}{2\lambda}\norm{Lu-y}_{T}^2 \right]\left(u_k\right) \\
& = u_k-\lambda_k \left[\beta u_k+\gamma L^*\left(Lu_k-z\right)+\frac{\delta}{\lambda_k}L^*\left(Lu_k-y_k\right)\right]\\
& = \left(1-\beta\lambda_k\right)u_k - B^*p_k,
\end{split}
\end{equation*}
$$
where
$$
\begin{equation*}
\begin{cases}
y_{u_k}'+Ay_{u_k}=Bu_k & \left(\Omega \times \left(0,T\right)\right)\\
y_{u_k}=0 & \left(\partial\Omega\times \left(0,T\right)\right)\\
y_{u_k}(0)=0 & \left(\Omega\right)
\end{cases}
\end{equation*}
$$
and
$$
\begin{equation*}
\begin{cases}
-p_k'+A^* p_k =\left(\gamma \lambda_k + \delta\right)y_{u_k}-\gamma \lambda_k z - \delta y_k & \left(\Omega \times \left(0,T\right)\right)\\
p_k=0 & \left(\partial\Omega\times \left(0,T\right)\right)\\
p_k(T)=0 & \left(\Omega\right).
\end{cases}
\end{equation*}
$$
- Proximal-point step:
$$
\begin{equation*}
\begin{split}
y_{k+1}& =argmin_{y\in L^2_T} \left\{\alpha_s \norm{y}_{1,T} + \frac{\delta}{2\lambda_k}\norm{y-Lu_{k+1}}_T^2+\frac{1}{2\lambda_k}\norm{y-y_k}_{T}^2\right\}\\
& = shrink(\tilde{y}_k,\tilde{\lambda}_k),
\end{split}
\end{equation*}
$$
where we defined
$$
\begin{eqnarray*}
\tilde{y}_k & = & \frac{y_k+\delta L u_{k+1}}{1+\delta};\\
\tilde{\lambda}_k & = & \frac{\alpha_s \lambda_k}{1+\delta}.
\end{eqnarray*}
$$
Remark: Another possibility is to consider
$$
\begin{equation*}
\mathcal{L}_{\lambda}\left(u,y\right)=\frac{\beta}{2}\norm{u}^2_{T}+\alpha_s \norm{y}_{1,T}+ \frac{\gamma}{2}\norm{y-z}_{T}^2+\frac{\delta}{2\lambda}\norm{Lu-y}_{T}^2.
\end{equation*}
$$
Computational experiments
In the following, we present the setting for the numerical experiments.
- Spacial domain: $\Omega=\left(0,1\right)$;
- Time interval: $\left[0,T\right]$, with $T=1$;
- Weight-parameters: $\alpha_c=[0, 0.01]$, $\alpha_s=[0, 0.65]$, $\beta=0.0001$ and $\gamma=1$;
- Trajectory target: $$z(x)=\mathcal{I}_{\left[x_a,x_b\right]},$$ where $x_a=1.7/3$, $x_b=3.5/4$;
- Control operator: for $x_1=1/7$ and $x_2=4/5$,
$$B=\mathcal{I}_{\left[x_1,x_2\right]};$$
- $A$ is the finite difference discretization of $-\Delta$;
- Numerical grid: $N_x=300$ in space, $N_t=100$ in time.
Stationary solutions
Figure 1: $\alpha_c=\alpha_s=0$.
Figure 2: $\alpha_c=0.01$, $\alpha_s=0$.
Figure 3: $\alpha_c=0$, $\alpha_s=0.65$.
Evolutionary problem
Optimal control
Figure 4a: Optimal control for $\alpha_c=\alpha_s=0$. In red, the controllable subdomain; in blue, the stationary optimal controls.
Figure 4b: Optimal control for $\alpha_c=0.01$, $\alpha_s=0$. In red, the controllable subdomain; in blue, the stationary optimal controls.
Figure 4c: Optimal control for $\alpha_c=0$, $\alpha_s=0.65$. In red, the controllable subdomain; in blue, the stationary optimal controls.
Optimal state
Figure 5a: Optimal state for $\alpha_c=\alpha_s=0$ . In red, the target $z$; in blue, the stationary optimal states.
Figure 5b: Optimal state for $\alpha_c=0.01$, $\alpha_s=0$. In red, the target $z$; in blue, the stationary optimal states.
Figure 5c: Optimal state for $\alpha_c=0$, $\alpha_s=0.65$. In red, the target $z$; in blue, the stationary optimal states.
Optimal adjoint
Figure 6a: Optimal adjoint for $\alpha_c=\alpha_s=0$.
Figure 6b: Optimal adjoint for $\alpha_c=0.01$, $\alpha_s=0$.
Figure 6c: Optimal adjoint for $\alpha_c=0$, $\alpha_s=0.65$.
Bibliography
[1] Peypouquet, J. Convex optimization in normed spaces: theory, methods and examples. With a foreword by Hedy Attouch. Springer Briefs in Optimization. Springer, Cham, 2015. xiv+124 pp.